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ABSTRACT

While the total number of theoretically possible quadruped gaits

is quite large, only six gaits have the property that they can be executed

while keeping at least three feet on the ground at all times. These gaits,

called creeping gaits, seem to be well suited for low speed locomotion

since, they permtt a quadraped tc remain statically stable during most of

a locomotion cycle. A mathematical analysis shows, however, that for

only three of the six creeping gaits is it possible to place the feet of an

animal or machine so that it is statically stable at all times. Furthermore,

- among these three, there exists a 'inque optimum gait whic'i maximizes

static stability. This gait corresponds to the normal quadruped crawl

favored by most a~nimals for very low speed locomotion.
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INTRODUCTION

The discrete aspects of legged locomotion have drawn the attention

of a number of investigators who have all been interested in the problem

of identifying and class*.fying the natural and theoretically possible patterns

of footfalls or gaits used by terrestrial animals for locomotion [ 1,2,3,4].

More recently, improvements in technology have lead to the development

of artificial legged locomotion systems and have raised certain questions

relating to the control and stability of such machines [ 5, 6, 7,81. This

paper is directed toward the formulation and solution of a particular

stability problem which arises in connection with both natural and artificial

quadrupeds. Specifically, the question to be resolved is the following:

Among all of the theoretically possible quadruped gaits, which ones have

the property that the feet in contact with the ground can be placed so that

the quadruped is statically stable at all times? These gaits are of particular

importance for both animals and machines since they represent modes of

locomotion which can be employed for arbitrarily slow motion.

The analysis to follow makes use of an extension of the finite state

model introduced in [ 3 ] to include the basic kinematic parameters assoc-

iated with the geometrical aspects of a quadruped machine or animal. The

principal result obtained is that only three quadruped gaits are suitable

for very low speed locomotion and that one of these possesses stability

properties superior to the other two. This gait is the typical quadruped

crawl recognized by Muybridge [ 21 as being the normal gait employed by

both natural quadrupeds and human beings for very low speed four-legged

Ji -2 -.
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locomotion.

SUPPORT PATTERNS AND STATIC STABILITY

Due to the high degree of complexity of natural and artificial loco-

motion systems based upon articulated limbs, it is necessary to make

certain simplifying assumptions in order to obta~in some concreLe results

relating to stability. For the purposes of this paper, only steady state

constant speed locomotion in a straight line over a horizontal plane support-

ing surface with the legs of the system cycling periodically in both space

and time will be considered. The legs of the systems to be investigated

will be idealized in the respect that the foot of each supporting leg will be

assumed to touch the supporting surface at a single point called the contact

point In addition, it will be required that the iorce exerted by any leg at its

contact point be directed into the i -)'-porting surface and that no moments

be applied by a leg to the support plane- i.e., locomotion with grasping

feet will not be treated. These assumptions aud constraints are formalized

in the following definition which imposes some additional requirements.

All of the results to follow are obtained with respect to this mathematical

model.

Definition 1: An ideal legged locomotion machine is a rigid body

to which are attached a specified nunber, n, of massless legs. The length

of each leg is arbitrarily controllable. Each leg contacts the supporting

surface at a point and can exert an arbitrary force directed into this surface.

Arbitrary moments can be applied to the body by any leg subject only to the
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constraint that no moment be applied to the supporting surface at any leg

contact point.

Given the contact point for each supporting leg of an ideal legged

locomotion machine, a support pattern r I Ifor any phase of a gait is defined

as follows:

Defin'tion 2: Tho support pattern associated with any phase of a

given gait of an ideal legged locomotion machine is the minimum area convex

poiat set in the support plane such that all of the leg contact points are

contained.

From this definition it is clear that when m feet of a machine are in

contact with its support plane, the support pattern is a polygon of not more

than m sides. Figure 1 displays a sequence of support patterns for the

previously mentioned crawl gait [2, 31]. The arrows on this figure show the

total motion of the center of gravity of the associated machine during each

phase of its motion. This gait alternates three and four feet on the ground

so its support patterns are alternately triangies and quadalaterals.

Support patterns are related to gait stability for ideal legged loco-

J motion machines by the following definition and theorem:

Definition 3: An ideal legged locomotion machinti is statically stab1-

at time t if all legs in contact with the support plane at the given time remain
il

in contact with that plane when all legs of the machine are fixed at their

locations at time t and the translational and rotational velocities of the

resulting rigid body are simultaneously reduced to zero.

I• -4-
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Theorem 1: An ideal legged locomotion machine supported by a

stationary horizontal plane surface is statically stable at time t if and

only if the vertical projection of the center of gravity of the machine onto

the supporting surface lies within its support pattern at the given time.

Proof: If a machine is not statically stable at time t then, due to

the rigid body assumption and the character of the legs of an ideal legged

locomotion machine, there must exist an overturning moment resulting

solely from gravitation.Al acceleration. Elementary mechanical consider-

ations show that such a moment exists if and only if it is possible to draw

a line in the support plane which passes through at least one leg contact

point and which separates the vertical projection of the center of gravity

onto that plane from the contact points of all other le(gs. But the set of all

such lines is ju3 the set of all tangents to the support patterm at time t.

Consequently,since all contact points are interior to the support pattern

and this pattern is a convex point set, a machine is statically stable at

time t if and only if the ver.ical projection of the center of gravity is also

interior to the support pattern.

CREEPING GAITS AND STABILITY MARGIN

While Theorem 1 provides a necessary and sufficient condition for

the static stability of an ideal machine, a real machine will be subjected to

various types of dieturbances and consequently may not remain upright

even though !he conditions of this theorem are satisfied at all times. It is

therefore desirable to introduce a notion of relative stability which provides
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some indication of the ability of a machine to resist disturbing influences.

The following definition provides such a measure:

Definition 4: The magnitude of the static stability margin at time t

for an zrbitrary support pattern is equal to the shortest distance from the

vertical projection of the center of gravity to any point on the boundary of

the support pattern. If the pattern is statically stable, the stability margin

i.s positive. Otherwise, it is negative.

Thif, definition leads to the following theorem:

Theorem 2: For an ideal legged locomotion machine, the minimum

number of legs required to achieve a gait with a strictly positive static

stability margin at all times is equal to threc If the time required to

transfer a leg contact point to a new position is greater than zero, the

number is four.

Proof: If the stability maigin is greater than zero, then the area

of the support pattern must a.lso be greater than zero. This is possible

only if the support pattern has at least three sides, implying at least three

feet on the ground. If no time is required for movement of a leg contact

point from one position to another, then successive ov-erlapping triangles can

be utilized to contain a moving center of gravity at all times. However, if

the leg transfer time is greater than zero, whenever any leg is lifted from

the supporting surface, thrve other legs must be in contact with that surface

implying at least four legs altogether. The sufficiency of four legs is esta-

blished by the support patterns for a crawl shown on Figure 1.

'i -6-
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Fur quadrupeds, it is evident that all gaits which satisfy Theorem

2 are of the following type:

Definition 5 (Tomovic £ 91): A gait of an n-legged machine is a

creeping gait if every support pattern involves at least n-l contact points.

Creeping gaits may be either singular or non-singular depending

upon whether or not simultaneous lifting and placing of two or more feet

ever occurs [L3 1. Since any singular gait can be obtained as the limit of

-,rne non-singular gait [31, the analysis to follow will concentrate on

non-singular gaits.

While it can be shown that there exist a total of 5040 theoretically

possible non-singular quadruped gaits [ 3 1, only a small number of these

qualify as creeping gaits. The next theorem establishes the number of

such gaits and identifies them:

Theorem 3: There are exactly six non-singular quadruped creeping

gaits.

Proof: A non-singular quadruped gait always in-.olves exactly eight

phases since no two feet are ever lifted or placed simultaneously [3].

Since a creeping gait never has more than one foot off of the supporting

surface, if it is non-singular, its support patterns must involve alternately

three and four feet on the ground. Thus, if the feet are numbered 1,2,3,4

as shown on Figure 1. the succession of supporting feet is uniquely deter-

mined by a permutation of these numbers which specifies the order in

which feet are placed; e.g. the crawl of Figure 1 corresponds to the
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permutation 1432. Since the first number in such a permutation is

arbitrary, it can always be chosen to be equal to 1. With this choice,

the five other possible permutations are 14Z3, 1342, 1324, 1-34, 1243.

Each of these is illustrated on Figure 2.

A KINEMATIC GAIT MODEL

In [31, a 2n-1 parameter model for any gait of a n-legged loco-

motion machine is introduced. This model, called a "gait formula",

completely describes the sequential characteristics of a gait, but omits

all of its spatial properties. The following definitions extend the idea of

a gait formula to include certain kinematic aspects of locomotion.

Defirntion 6 (Hildebrand [ 11 ): The stride length of a gait is the

distance, X, by which the body of a locomotion machine is translated

during any complete leg cycle.

Definition 7: The dimensionless foot position, (xiy i), for leg i of

a legged locomotion machine is a pair of coordinate values which specifies

the position of the contact point of any supporting leg. The origin of the xy

coordinate system is the center of gravity of the machine. The x coordinate

axis is aligned with the direction of motion with positive x directed forward.

The y coordinate axis is normal to the x axis and is oriented so that it is

positive on the left side of the machine. The scale of the x and y coordinate

axis is chosen so that X = 1.

Definition 8: The dimensionless initial foot position, (yi, 6.), is the

-8-



value for the pair x.,yi which exists at the time leg i first contacts the

supporting surface during any locomotion cycle.

The "gait formula" defined in £ 3 1 involves two types of parameters.

The first of these is the duty factor, 8i, which expresses the fraction of

time that leg i is in contact with the supporting surface during one complete

cycle of locomotion. The second is the relative phase, 0i, which indicates

the amount by which the motion of leg i lags the motion of leg 1 expressed

as a fraction of the time required to complete one cycle of locomotion.

These parameters together with the initial foot position variables are

combined in the following definition:

Definition 9: A kinematic gait formula, k, for an n-legged loco-

motion machine is the (4n- l)-tuple

k = (81, 1,.e*1n Yl z,,...Yn 561,# 6 2S... 6  n 02,30 V...0n (1)

The following theorem establishes the extent to which a kinematic

gait formula determines Lhe motion of a locomotion machine.

Theorem 4: A kinematic gait formula completely specifies the

position of the supporting feet and thevertical projection of the center of

gravity of an ideal legged locomotion machine in both time and space up

to a multiplicative factor of - in time and X in space.

Proof: If t' stands for a time variable measured in arbitrary units

and r is the cycle time [ 3 required for one complete locomotion cycle

••, -9-
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measured in the same units, then a dimensionless time variable can be

defined as t = t'/¶. If t = 0 is chosen to correspond to the time when leg 1

first touches the supporting surface, then since x. is a spatially normalized
I

variable

xI(t) = Y1 - t 0_< t_< (2)

Since leg 1 does not touch the ground during 0 < t < 1, x 1 (t) is undefined

for this period of time. Since t is normalized, the period of x (t) is equal

to 1 so (2) determines x (t) for all t such that leg 1 is ii. a supporting phase.

For any other leg i,

xit) = y."(t- 0i) 0 . < t< 0.1+ B. (3)

and x.(t) is undefined for 0.+ B. < t < O.+1. Again, since the period of leg i1 1 1 1

is also equal to 1, (3) determines the dimensionless leg Dosition for any

supporting leg.

Since the motion of the machine is entirely along the x-axis and the

leg positions are required to be periodic in space, yiZ 8. whenever X. is
1 1

defined. Thus,k determines (xiYi) for all supporting legs for all t. More-

over, if (xo,y 0 ) is the dimensionless location of the vertical projection of

the center of gravity of the machine relative to its initial positon on the

support plane, then

(xoyo) -- t,0) (4)

so the center of gravity location is also determined. Finally, multiplication

-10-
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of art; dimensionless pair (xiyi) by X produces positions in the units of X.

OPTIMUM KINEMATIC GAIT FORMULAS

The crawl gait shown on Figure I is described by the kinematic gait

formula

S11 11 11 11 1 1 1 1 1 3 1T 12' 12' I2' 2' 1, , 0, 4 4' 2' Y T (5)

While examination of this figuie shows that this gait possesses a positive

stability margin at all times, it is possible that some other kinematic gait

formula would produce a more stable crawl. It is useful, therefore, to

attempt to find optim gait formulas for all six of the creeping gaits of

Figure 2. The following definitions make this notion precise.

Definition 10: The dimensionless longitudinal stability margin at

time t for an arbitrary support pattern associated with a kinematic gait

formula, k, is denoted by s(t,k) and is equal in magnitude to the shortest

distance along the x coordinate axis from the center of gravity of a loco-

motion machine to an edge of its support pattern. If the pattern is statically

stable, the stability margin is positive. Otherwise, it is negative.

Definition 11: A kinematic gait formula, k*, for a given gait

matrix [3], G, is longitudinally optimum if

max min s(t,k) min s(t,kk*) = s*(G) (6)
ke K te [0,l] te[O,1

G

where KG is the set of all gait formulas which imply G [3]. The function
S-ll -
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s*(G) is the optimum dimensionless longitudinal stability margin for G.

The connection between s*(G) and static stability for quadruped

creeping gaits is established by the following theorem:

Theorem 5: Let G be the gait matrix for a quadruped creeping

gait and let KG be the set of all kinematic gait formulas which imply G.

Then there exists a k e KG such that the machine associated with k possesses

a strictly positive static stability margin at all times if and only if s*(G) >0.

Moreover, when such a k exists, it satisfies the constraints: 61 > 0, 53 > 0,

62 <0, 54 < 0.

Proof: Suppose the condition on the 6 variables is satisifed. That

is, the machine has two feet on each side of its centerline. In this case,

the projection of its center of gravity is in the interior of its support pattern

and it has a strictly positive static stability margin if and only if its longi-

tudinal stability margin is strictly positive. But this is satisfied at all

times if and only if s*(G) >0. Now suppose the condition on the 6 variables

is not satisfied. Then there must exist some phase of the gait such that the

center of gravity of the machine lies either on the right or left boundary of

the support pattern or entirely outside of it. Consequently, independently

of s*(G), such a gait will fail to have a strictly positive static stability

margin at some time in any complete locomotion cycle. Thus, k exists if

and only if s*(G) >0 and 65> 0, 63>0, 62 < 0, 64<0.

2-l 8
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OPTIMIZATION OF THE CRAWL GAIT

Examinat:.on of Figure 1 shows that, due to the forward motion of

the center of gravity of a locomotion machine, the minimum value of the

longitudinal stability margin associated with any support pattern of any

gait occurs either at the moment the pattern is established or at the end

of the interval in which the pattern exists. In addition, if the minimum

occurs at the beginning of the interval, it is associated with a line at the

rear of the support pattern while if it occurs at the end, it is associated

with a line at the front of the pattern. Thus, since a total of eight support

patterns comprise a non-singular crawl gait, there are eight critical times

at which the minimum longitudinal stability margin may occur. These are

all indicated in the following set of eight linear equations which establish

the position of the critical feet at the times indicated.

t 1  Leg 4 lift-off

x = Y3 + 03- 04- 84 (7)

x= 2 Yz+ 0 Z 04- 84 (8)

"t2  Leg 4 touch-down

x= Y1 - 04 (9)

x= YZ+ €2- 0 4- i (10)

t3 : Leg 2 !ift-off

x3 = 3+ -3" 0 - ( 11)l

x4= Y4 + 04 -• 2 %2+1 (12)

-13-
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F
t 4 : Leg 2 touch-down

X l= Y C2 (13)

x4 Y 4 + 04- 0 2  (14)

t 5 Leg 3 lift-off

x1 : Y 1- 0 3- 53+1 (15)

x 4 = Y4 + 04-0 3- 3+1 (16)

t Leg 3 touch-down

"X I Y I1 - 03 (17)

X2 Y2 + 0 2- 0 3 (18)

t7: Leg 1 lift-off

x= Y3 + 03-81 (19)

x4= y4 + 04-. 1 (20)

t 8 : Leg 1 touch-down

x= Y2 +€ 2 - 1 (21)

x3 Y3 + 03- 1 (22)

In order to calculate the longitudinal stability margin at each of the

above times, it is necessary to assume some values for the y-coordinate

of each leg. Since all natural quadrupeds possess right-left symmetry, it

will be c'-venient to make hdi.. assumption here. In addition, to simplify

the analysis still further, it will also be assumed that the spacing between

the front legs in the y direction is the same as for the rear legs. Thus,

the class of gait formulas, KG, to be considered satisfy the constraint

-14-



1 =~ 8 = -6 6 > 0 (23)

With this constraint, the longitudinal stability margin is independent of 8.

In particular, for the crawl gait, from Figure 1 and eq. (7) and (8), at

t = t 1 , the horizontal distance from the center of gravity to the rear of the

support patte'n is just

-x2- x
f (k) 2 2 3 1 0 - 0 Z+ (4 (24)

2 T 1"2 Y3 0- 2 3- 4 4 fII
At t = t 2 , the distance to the front of the support pattern is

x 1 x2  1
Sf2 (k) - 2 202 I. Y 2 + 02- 204- 1 (2 5)

Consequently

min x(t,k) = min f. (k) (26)
te[tt t 2 iE[l,21

Continuing this analysis for the other support patterns, and associating

f.(k) with conditions at t = t., from eq. (11) through (22), the appropriate

functions are:

f (k) 2= 3-43 1 0- 4+22+2$ 1 (27)

4 x 1 4 4- 2)

f4(k) -x - 2 P!9)

f 5(k) 2 2 2 1'yl1 Y4 - Y4+ 203+ ?3- 2 (29)

-15-
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f 6 (k) - 12 1 (30)

f (k) - _-X•'3 % • -•+z3}1132 Y4 0~ 3y+ + 0 4 53(1

x.+ x3

f8 (k) 3 3 - +{ + + O + 03 - (32)

Finally, by analogy to (26)

min s(t,k) min f.(k) = f (k) (33)te [0, 1 ic[l,Z,...8)

and k* is found by maximizing the criterion function f (k) over KG.

Referring again to Figure 1, it is evident that increasing the fraction

of time, 8i. that leg i spends in contact with the supporting surface never

reduces the static stability margin of a gait. Thus, for any gait, f (k) is

non-decreasing in 8. and at least one k* will involve 8.= 1 for all i. But1 1

this is impossible for a non-singular gait [ 3 1. To avoid this difficulty,

the further restriction will be placed on KG that

81 82 8 = 8 (34)

i.e., only regular gaits [3] will be considered. The criterion function

f 0o(k) will then be optimized for a fixed value of 8.

Even. after the parameters 8.1 are fixed according to (34), f (k)

remains a nonlinear function of seven variables to be minimized subject

-16-
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to the inequalities

0 I - (35)
4 --

02 >_ 04+ (1 - B) (36)

0 > 0 3 Z 02+ (1 -) (37)

which are dictated by the sequence of support patterns involved in a crawl.

Problems of this type fall within the domain of nonlinear programming [ 103

and are typically very difficul: to solve. In this particular case, however,

a solution has been found by means of relatively straightforward iterative

procedure. Rather than recording the details of this calculation, the

results are presented as a theoiem:

Theorem 6: If 61= 63= -6= -64= 6, then for I > • >3/4, any longi-
1 3 2 64

tudinally opti.num kinematic gait formula for a regular crawl gait must be

of the form

k= , a +,a + ý, -a+ ,-a +, 6, -6,6, - 6,.-,1 i,, N- k* (38)

where

a > 6 > 0 (39)

Furthermore, such a crawl is a singular crawl with the gait matrix [31

G 0=00 (40)

S0010
"i1 O0 0

-17-
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The longitudinal stability margin for this gait is given by

s*(G) = S- 3/4 (41)

Proof: First of all, it is clear that the constraints imposed by

(35), (36), and (37) are satisfied. Then, substituting k* into (24), (25),

and (27) through (32),

3f f(k*) - - (42)

f2(k*)(4 8f f(k*) =a- + 1(4%

4

f3 (k*) = a -+ (44)
3 2 4
I 3

f4 (k*) - (45)
4 4

3

f5 (k*) = 8- 3 (46)5 4

f6 (k*) = a- + (47)

f7 (k*) = a - t+ (48)

3
f8 (k*) = 8- - (49)8 4

Thus, the criterion function fo(k*) is determined either by fit f 4 # f 5, and

f 8 or by fzI f 3 , f6 , and f 7 " To determine which of these cases applies, it

is necessary to consider the allowed range of values for the arbitrary

constant a. A lower bound on a can be obtained from the requirements

x (t) > x 3 (t) (50)

and

x2 (t) > x4 (t) (51)

-18-
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imposed by the necessity of avoiding interferc-nce between front and rear

feet. From Figure 1 it can be seen that the minimum value for x, (t) - x 3 (t)

occurs at t = t6 at which time

x (t) = " W 2a -8 > 0 (52)

so

a _> (53)

and for i 2,3, 6,7

f. (k*) > 4 (54)

Solution of (51) yields identical results. On the other hand, for i = 1,4, 5,8,

since 8 < 1,

f.(k*) < - (55)

It follows, therefore, that the longitudinal stability margin is determined

by fl' f4 , f5P and f8 for all allowed values of a.

Since (42), (45), (46) and (49) all yield the same values for the k

given by (38), this value is optimum unless there exists some vector, Ak,

such that

f (k* +Ak) > f (k*)0 0

This in turn is possible if and only if flI f4, f and f 8 can all be increased

simultaneously. To determine whether or not this is possible, from (24),I?8), (29), and (32), substitution of k* t Ak for k* results in the relations'-ipb

-i9-
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i1 1 " 57

1 I = 2 -AY 2 - Ay 3 - AO2- 60 3+2A 4 (57)

M 4 = -" AYl+ "y 4 + A0 4 - 2A0 2  (58)

A = !-AY -AY - AO + 2A0 (59)
5 1 4 4 3

f= A aY+ 3 + 02 + A03 "! (60)af8 = ? 2 3

waere

Af. = f.(k* + Ak) - fi(k*) (61)

Since 0 3= 0 in (39), the left hand side of (38) is satisfied as an equality.I3

Consequently, it is necessary in :57) through (60) that

AO 3 < 0 (62)

1 1

L~kewise, since Oz= I and 0 8 - - in (38), (36) is also satisfied as an
2 4 2

equality with the consequence that

AO, = A0 4 + E, > 0 (63)

must also be satisfied in the evaluation of (571 through (60).

SubsLituting (6,) into (57) through (60) and requiring that Af. > 0,

i = 1,4, 5,8, results in the expressions

-AY2 " 3 - AO 3 i AO - > 0 (64)

I Y-L 4 + A 3 - 2C > 0 (65)

-AYI " Y4 + ZA0 3 - AO04  > 0 (66)

Ay 4 AY3 + AO 3 + AO 4 e > C (67)

-20-



[1_

Addition of these four equations produces the relationI
2•0 -2r > 0 (68)

3

or

Lt• > _> 0 (69)

But this is a contradiction since (62) requires 603_< 0. Consequently, nc-

Lk exists which simultaneously increases fl, 4' f and f8 so (38) is

optimum. The G matrix associated with (38) can be constructed from the

algorithm given in [3 3.

To show the uniqueness of (38), it is sufficient to equate (64) through

(67) to zero. In that case, (69) becomes

A0 •>0 (70)
3-

In view of (62), this implies

0 = 0 (71)

3

which in turn requires that A04 and A02 also equal zero in order for (64)

through (67) to be satisfied as equalities. Thus,there is no Ak 1 0 such

that f (k* + Ak) = f (k*) and (38) :s therefore unique.
0 0

OPTIMIZATION OF OTHER CREEPING GAITS

In the appendix to this paper, equations alalogoas to (24) through (32)

are developed for each of the fLve other creeping ga:ts. These equations can

be subjected to an optimization process in the same way as the crav,, ga,ý

was treated.

-Il



The results of such an optimization are detailed in the appendix and

summarized in Table I. This table provides the basis for the following

° itheorem:

I
Theorem 7: For any specified value of the duty factor, 6, in the

range < B < 1, the optimum dimensionless longitudiral stabili f margin

for a regular crawl is greater than for any other regular gait. Moreover,

there are only two other non-singular creeping gaits, 1342 and 1243, which

possess kinematic gait formulas with a strictly positive value for their

minimum longitudinal stability margin for any $ < 1.

Proof: Table I proves the first part of the theorem and the second

part with respect to regular gaits. For irregular gaits, it is sufficient to

note that since the minimum longitudinal stability margin is non-decreasing

in $., if

P = max (72)

ther- the regular gait with e = 8 will ba at least as stable as the associatedm

irregular gait. It follows, therefore, that since the stability margin of

regilar kinematic gait formulas for the gaits 1324, 1432, and 1234 is

bounded by

s*(G) = 8-1 < 0 (73)

this bound also applies to the irregular gaits.

1 -22-
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DISCUSSION OF RESULTS

The information contained in Table I is in dimensionless form. In

absolute form, in any units, since s*(G) is normalized to X, the denormal-

ized optimum stability margin is given by

xs = Xs*(G) (74)

This shows that it is desirable to make X as large as possible consistent with

r satisfying the requirement for no interference between legs expressed by

(52). Since the variable a in this expression is normalized to X while 8 is

not, if x is the denormalized value of a, (52) becomes
a

2x - X$ > 0 (75)
a -

so the maximum value for X is

2x
X- a (76)

The corresponding value for a is

x
aa = - - (77)
m

so from (38), the unique regular crawl gait which maximizes the denormal-

ized minimum longitudinal stability margin is defined by

k 0,6 (78)

which involves only the two parameters 6 and 8. This gait is illustrated by

Figure 3.
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Examination of Muybridge's photographs [ 2] shows that Figure 3

corresponds closely both in space and time to the normal slow quadruped

walk. The only important exceptioi, is that since (78) requires that each

rear foot be placed in the footprint of the foot ahead of it at precisely the

time the front foot is lifted, living quadrupeds employ 0 < 3/4 so that the

front foot is lifted a short time before the rear foot is placed in order to

I provide the necessary clearance between feet. The rear foot is sometimes

S placed somewhat ahead of the front foot footprint to compensate for the

early lifting of the front foot [ 1]. Apparently, for moderately low speed

I locomotion, this solution to the foot interference problem is more satis-
t

factory for the majority of living quadrupeds than the alternate solution of

shortening the leg stroke of the optimum crawl defined by (78). It appears

I that a true crawl is generally used only for grazing and for other very low

sieed activities [1].

Hildebrand [ 1 has ob. erved that, apparently, no living quadruped

* uses the gait 1324 (gait number 5 in his classification scheme) and has con-

jectured that this might be due to the poor stability properties of this gait.

The analysis presented here confirms this hypothesis. It seems likely that

the gaits 1432 and 1234 are also unused for the same reason. The authors

are unaware of any observations of the gaits 1342 and 1243 in use by a living

quadruped even though these gaits are stable for a sufficiently large duty

factor. It may well be that th_- optimality of the crawl has caused it to be

adopted as the unique gait utilized by natural quadrupeds for very low speed

locomotion.
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SUMMARY AND CONCLUSIONS

The results obtained in this paper show that there exists a unique

solution to the problem of choosing a gait to optimize the stability of low

speed quadruped locomotion. This gait corresponds essentially to the low

speed gait preferred by most natural quadrupeds. The analysis excludes

certain types of locomotion due to assumptions on the geometry of the

machine or animal. In particular, the machine is not allowed to drag a

stabilizing tail as kangaroos and some legged reptiles do [ 12], nor is it

permitted to overlap its feet as would be possible if the front pair of legs

were spaced more widely or more narrowly than the rear pair.

While the conclusions reached in this paper are obtained with reipe,.t

to an idealized model, the model appears to be sufficiently close to reality

to permit qualitative extrapolation to real locomotion systems. Obviously,

such characteristics of real systems as the non-zero mass of lags could

be included in a more complicated analysis. Such analysis should probably

be carried out for particular machines whenever it is important that the

greatest possible degree of static stability be achieved.

The type of analysis presented here could be readily extended to

a study of insect gaits. It would be interesting to determine if i;-sects also

utilize optimally stable modes of locomotion. It appears that stability

analysis of biped gaits requires the use of dynamic models which ar, neces-

sarify more complicated than the kinematic model defined in this paper,

The same is true of higher speed quadruped gaits which typically contL-X•

statically unstable phases [1].
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Footfall Stability
Sequence Margin

3
1432 

3

3 5

1342 2 4

3 5
1243 4-

1432 1

1324 1

1234 -1

= duty factor

Table I: Optimum Dimensionless Longitudinal Stability
Margins for Regular Quadruped Creeping Gaits
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APPENDIX

Stability Margin Optimization

Gaitsl 342 and 1243

The foot position equations for gait 1342 are as follows:

t 1  Leg 3 lift-off

Xl = Y -q) 3 + 1 (79)

x 4 =Y 4 +"P4 -"3-0 (80)

I> tz: Leg 3 touch-down

x, : 1 - 3 (81)

xz yz+ CP _-C - (82)
2 2 3 82

t 3: Leg 4 lift-off

x3 = y3+ Cp3 -CP4 - + (83)

x2 = y + -p4-C (84)
2 z

t4: Leg 4 touch down

xl = yl-TP4 (85)

x 2 = Y2 ± c 2 c-CP4-1 (86)

t .: Leg Z lift-off

x3 = +1-3-C2 -I (87)

x =y+ CP +1 (88)
44-+



t 6: Leg Z touch-down

X= Y 1 -c (89)

x = C4+4- p7 (90)

The equations for t and t are the same for all gaits and are given by

(19), (20), (21), (22). Combining the foot position equations appropriatelf

leads to the s~ability margin equations,

-x C-x 4f1 - y- Y 4- 4+2cp342$-1 (91)

1 2 2 1 4- 4 3'
xf + x2

- 2 - Z' Ty 2 I+Yz+'4 (439)

-x -x3 1 f +2 3 . 4+ 2 .. 1 (93)

3 2 = -Y2"Y3-092-q)3 `4

-2 = - 4- (94)

-x -x \ +y 2 +tP2- 4 -l

1l+X4 1 2 (

S= I y1 +y 4+ Yp 4 -+ q (96)

The other two stability margin equations are again the same for all gaits

and are given by (31) and (32).

Examination of the above equations shows that the unique

optimum kinematic gait formula for this gait is given by

:- -3 -3

k= (5,5, Y ?-a + -Yr 33- 6, 36,5 -3-2, 2 -1)k=~ ~ (BSr,•;lZ- 2 B •-1 2',,

(97)

SFor this gait formula, if YI and Y2 are sufficiently large, then the long'-

I tudInal stability margin is determined by

- -ii-
I
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3
s*(G) - f 3 ff f =

1 3 6 8 2 4

Since reflection of gait 1342 about an axis paralle! to the centerline of

-.ts support patterns produces gait 1-34 (Figure 2), (98) applies equally

well to either gait.

Gaits 1234 and 1432

i 'r gait 1432, the stability margin equations :-re:

f! = 3 -C 31 2w 4 + 2 8 (99)

2 - Y + 2+ $-1 2t (100)

f = "Y4 - 4 -r 2 (1Z

fc 12c~- (102)

4:- 2 1 2 Z 2 342 3}

f- 2 3 1 34 ; +-ý- - - 12 5-Z (103)

f= -Y +y + rp -2X (104)
"6 4 2

and f and f are again given by (31) and (32). An optimum kinematic gait
7 8

formula for this aet of equations is:

k = (6, 6, a, 8, a+-/2.,a+0/2, -ai-r/2, -a+$/2, 6, -6,6, -6, 3/4,

(105)

with this set of gait parameters,if the variable a is a sufficiently large

positive number, then the stability margin is determined by

s*(G)= f = f 6 = -i (106)

g3

--21 1
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r
The k given by (105) is not unique since if 6p 4 = 26 3 and

412 = Aq) 3 , then f3 and f6 are unchanged. Since gait 1234 is a reflection

C' gait 1432 about a longitudinal axis, (106) applies to both gaits.

Gait i 324

For gait 1324:

- -Y4 -4+ =2 ±+ -1 (107)

f j { " y+y +=• Z-. 3 -i (108)

f { -• (109)

f 4 = j Y 1 +Y 4 +q,4 -Ztl- 1 (110)

f5 { Y2 "Y 3 -PZe'P 3 +2'P4 ++20-2 (111)

1' .yl+ y { 2 + ýP2 4 (112)6 2

f = y 2 +Y+ cpZ ) (114)

The corresponding unique optimum kinematic gait formula is:

k = (0, I, I, I, &+OiZ, a+O/Z, a+L/Z,-a+I/Z, -a+N1Z, 6,-8, % -6, 1/2, 0-1/2, 5)

(115)

With this formula, if the variable a is sufficiently large and positive,

s*(G)= f f 4 f 5 = f8 0-I1 (116)
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